Best Practice

Sammlung von Erfahrungswerten und praktischen Hinweise für gängige Bastelprojekte

Ideen und Vorlagen

- Vorlagen zum erstellen von Boxen und Aufbewahrungshilfen:
 - https://www.festi.info/boxes.py/
- Verbindungen von Plexiglaselementen https://store.curiousinventor.com/blog/how-to-make-cheap-lasercut-custom-boxes-for-your-diy-electronics/

Workflow zum Lasercutten

Empfohlenes Vorgehen:

- Falls noch nicht erledigt: Eigenen Laptop mit Lasercutter verbinden. Dazu ins Zam Netzwerk einloggen. Die Einrichtung dauert unter 5 Minuten, die Arbeitsersparnis ist enorm - vor allem wenn mit Schriftarten gearbeitet wird, welche nicht auf dem ZAM PC installiert sind.
- Platte aus der gecuttet werden soll raussuchen (1. Müll, 2. Vorrat) und vermessen
- Dokument in Inkscape anlegen, mit den Maßen der Platte. Bei bereits ausgeschnittenen formen, einfach Platzhalter an die entsprechenden stellen ziehen. Im weiteren Verlauf bildet dieses Inkscape-Dokument quasi den digitalen Zwilling für die Platte im Lasercutter zur Verwaltung der freien Flächen.
- Lasercutt-Daten zu Dokument hinzufügen und auf der Platte positionieren
 - o rot, #ff0000ff: schneiden
 - o grün, #00ff00ff: markieren
 - o schwarz, #000000ff: gravieren
 - ∘ blau, #0000ffff: ignorieren
- Nächstes Element (oder Elemente) zum cutten an den Lasercutter senden via VisiCut
 Plugin for Inkscape (https://hci.rwth-aachen.de/visicut-inkscape-plugin). Das Element wird
 genau gleich, wie in Inkscape positioniert. Zusätzlich werden alle Elemente als Pfade
 umgewandelt (bei nicht umgewandelten Elementen kann es zu Abweichungen beim
 Lasercutten kommen).
- VisiCut einstellungen treffen und Jobnamen festlegen.
 Empfehlung Jobname: Initialien und aktuelle Minuten. Wenn Hans Müller um 18:35 Uhr einen Job versendet, wäre das "hm35". Das ist kurz und eindeutig.

Materialkosten

Preisliste Stand 15. Januar 2024

Preisliste Lasermaterial

Acrylglas (auch gennant: PMMA, Plexiglas) acrylic sheets (other names: PMMA, Plexiglas)

alle Größen:

1mm Dicke = 1 Euro

2mm Dicke = 2 Euro

3mm Dicke = 3 Euro

4mm Dicke = 4 Euro

5mm Dicke = 5 Euro

6mm Dicke = 6 Euro

usw.

MDF (Mitteldichte Holzfaserplatte)

MDF (medium-density fibreboard)

alle Größen:

3mm Dicke = 2 Euro

usw.

Graukarton (ca. 450g/m², einseitig farbig)

cardboard (approx. 450g/m², colored on one side)

alle Größen:

1 Bogen = 0,50 Euro

Reste (in beschrifteten Eurokisten)

offcuts (in labeled euro crates)

kostenlos - wir freuen uns über Spenden :)

Steckverbindungen und Burn-Korrektur

Erfahrungswerte Burn-Korrektur: Bitte neuestes Datum oben

Datum	Gerät	Material + Dicke	Burn-Korrektur	Eigetragen von
2024-01-19	Zing 6030	HDF 3mm	0.06	Markus Dutschke

Hintegrund

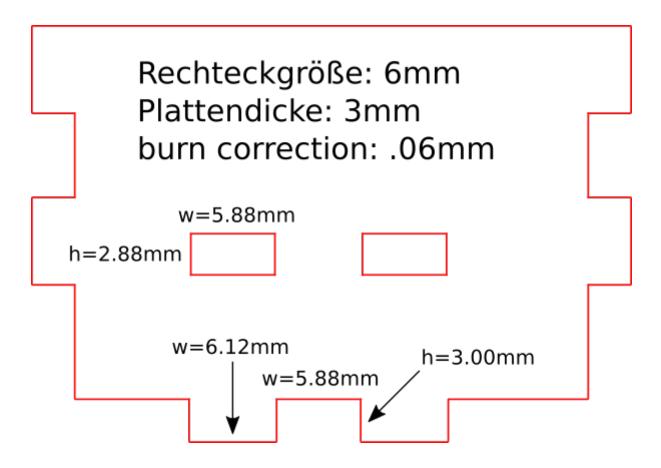
Beim Erstellen von Rechteck-Steckverbindungen wie auf Pyboxes verwendet (ineinander greifende Rechtecke) müssen folgende Effete beachtet werden, um eine Passgenauigkeit zu erzielen, welche weit genug zum zusammenführen und eng genug für einen stabilen Halt ist:

- große des Laserstrahl
 Die Schnittdicke des Lasers führt dazu, dass ineinander greifende Rechtecke eine ganz leichte Lücke aufweisen
- Materialeigenschaften
 Verhalten und Oberfläche des Materials an den Schnittkanten bestimmt ebenfalls die Eigenschaften der Steckverbindung
- Laserstrahl ist nicht parallel sondern fokusiert
- Laserstrah ist nicht punktförmig, sondern oval
- Genauigkeit (Diskretisierung) Motorsteuerung
- (eventuelle) Schiefstellung des Lasers
 Wenn der Laser nicht 100% Senkrecht steht, sondern ganz leicht schief, sind die
 Schnittkanten nicht mehr senkrecht und es wird etwas mehr Spiel benötigt, um Rechteck-Steckverbindungen zusammenzustecken. Diese extra Toleranzen hängen vom
 Zusammensteckwinkel und der Orientierung der Steckverbindung beim Lasercutten ab.

Der Einfachheit halber, fassen wir diese Effekte als **Burn-Korrektur** zusammen. Es ist am sinnvollsten diese empirisch zu ermitteln. Da auch andere Effekte als die Laserausdehnung eine Rolle spielen, muss diese nicht für alle Materialtypen und Dicken gleich sein.

Definition der Burn-Korrektur

Bei der Definition der Burn-Korrektur lassen wir die anderen Effekte außer Acht und betrachten nur die physische Ausdehnung des Laserstrahl. Die Burn-Korrektur entspricht hierbei dem Radius des Laserstrahls.


Nehmen wir für die folgenden Beispiele eine Burn-Korrektur von 0.06mm an.

Unterschied zwischen positivem und negativem Ausschnitt:

Möchte ich also ein **Quadrat** von 6mm Kantenlänge ausschneiden, muss ich dieses **6.12mm** groß designen, da beim ausschneiden an beiden Rändern der Radius des Laserstrahls von 0.06mm zusätzlich abgetragen wird. Möchte ich hingegen eine **quadratische Aussparung** von 6mm Kantenlänge erzeugen, so muss ich dieses als **5.88mm** großes Quadrat anlegen, da der Radius des Lasers zusätzlich abgetragen wird.

Abmessung Burn-Korrektur:

Hier nocheinmal die typischen Bemaßungenbei einer Rechteck-Steckverbindung

Download als .svg: 240201 burnKorrektur.svg

Verbindung von Lasergecutteten Teilen

Rechteck Steckverbindung

Standardverbindung. Zur vollen Stabilität noch kleben

Kleben

Einschmelzgewinde

Schriftzüge auf Acryl